Estrategias interactivas e inclusivas para el desarrollo de habilidades cognitivas-motrices en el nivel de Educación Básica General
Resumen
El desarrollo de habilidades cognitivas-motrices en la Educación Básica General es fundamental para el crecimiento integral de los estudiantes. Estas estrategias promueven la participación activa, la colaboración y la adaptación de actividades que permiten a cada estudiante desarrollar sus habilidades a su propio ritmo. La implementación de juegos, actividades grupales y el uso de tecnologías educativas son ejemplos de enfoques que pueden facilitar el aprendizaje. Estas metodologías no solo mejoran las habilidades motoras, como la coordinación y el equilibrio, sino que también estimulan el pensamiento crítico y la resolución de problemas. Además, al incorporar elementos inclusivos, se asegura que todos los estudiantes, independientemente de sus capacidades, puedan participar y beneficiarse del proceso educativo. Investigaciones han demostrado que el uso de estas estrategias interactivas puede resultar en un aumento significativo en la motivación y el compromiso de los estudiantes, lo que a su vez mejora su rendimiento académico y su bienestar emocional. Asimismo, el fomento de valores como el trabajo en equipo y el respeto hacia los demás se convierte en un aspecto esencial de la educación, preparando a los estudiantes para ser ciudadanos activos y responsables en la sociedad.
Descargas
Citas
Darling-Hammond, L. (2006). Constructing 21st-Century Teacher Education. Journal of Teacher Education, 57(3), 300-314.
Fornia, L., Leonetti, A., Puglisi, G., Bello, L., & Cerri, G. (2024). The parietal architecture binding cognition to sensorimotor integration: a multimodal causal study. Brain, 147(1), 297–310.
Gallahue, D. L., & Ozmun, J. C. (2006). Understanding Motor Development: Infants, Children, Adolescents, Adults. McGraw-Hill.
Guo, J., Hou, Z., Xian, Y., & Yu, Z. (2024). Progressive modality-complement aggregative multitransformer for domain multi-modal neural machine translation. Pattern Recognition, 149, 110294.
Guo, J., Hou, Z., Xian, Y., & Yu, Z. (2024). Progressive modality-complement aggregative multitransformer for domain multi-modal neural machine translation. Pattern Recognition, 149, 110294.
Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta Analyses Relating to Achievement. Routledge.
Johnson, D. W., & Johnson, R. T. (1994). Learning Together and Alone: Cooperative, Competitive, and Individualistic Learning. Allyn & Bacon.
Karousou, A., & Economacou, D. (2024). Quantity and quality of book reading to infants and toddlers: their effect on early communication and language development. Psychology, 29(1), 1–27.
Karousou, A., & Economacou, D. (2024). Quantity and quality of book reading to infants and toddlers: Their effect on early communication and language development. Psychology, 29(1), 1–27.
Kravel-Tovi, M. (2024). Self-suasion: agents of Jewish conversion in Israel in search of religious sincerity. Journal of the Royal Anthropological Institute, 30, 43–60.
Kravel-Tovi, M. (2024). Self-suasion: Agents of Jewish conversion in Israel in search of religious sincerity. Journal of the Royal Anthropological Institute, 30, 43–60.
Liu, B., Song, H., Lin, Y., Zhao, X., & Yang, J. (2024). PRTA: Joint extraction of medical nested entities and overlapping relation via parameter sharing progressive recognition and targeted assignment decoding scheme. Computers in Biology and Medicine, 176, 108539.
Liu, B., Song, H., Lin, Y., Zhao, X., & Yang, J. (2024). PRTA: Joint extraction of medical nested entities and overlapping relation via parameter sharing progressive recognition and targeted assignment decoding scheme. Computers in Biology and Medicine, 176, 108539.
Liu, H., Zhang, T., Li, F., Yu, M., & Yu, G. (2024). A probabilistic generative model for tracking multi-knowledge concept mastery probability. Frontiers of Computer Science, 18(3), 183602.
Liu, H., Zhang, T., Li, F., Yu, M., & Yu, G. (2024). A probabilistic generative model for tracking multi-knowledge concept mastery probability. Frontiers of Computer Science, 18(3), 183602.
Moneus, A. M., Al-Inbari, F. A. Y., & Al-Wasy, B. Q. (2024). Difficulties and Challenges of EFL Simultaneous Interpretation Among Saudi Undergraduates. Journal of Psycholinguistic Research, 53(2), 18.
Moneus, A. M., Al-Inbari, F. A. Y., & Al-Wasy, B. Q. (2024). Difficulties and challenges of EFL simultaneous interpretation among Saudi undergraduates. Journal of Psycholinguistic Research, 53(2), 18.
Nobre, G.C., Nobre, F.S.S., & Valentini, N.C. (2024). Effectiveness of a Mastery Climate Cognitive-Motor Skills School-based Intervention in children living in poverty: Motor and Academic performance, self-perceptions, and BMI. Physical Education and Sport Pedagogy, 29(3), 259–275.
OCDE. (2018). The Future of Education and Skills: Education 2030. OECD Publishing.
Oli, P., Banjade, R., Lekshmi Narayanan, A. B., Brusilovsky, P., & Rus, V. (2024). Exploring The Effectiveness of Reading vs. Tutoring For Enhancing Code Comprehension For Novices. Proceedings of the ACM Symposium on Applied Computing, 38–47.
Oli, P., Banjade, R., Lekshmi Narayanan, A. B., Brusilovsky, P., & Rus, V. (2024). Exploring the effectiveness of reading vs. tutoring for enhancing code comprehension for novices. Proceedings of the ACM Symposium on Applied Computing, 38–47.
Park, Y. (2024). Elementary School Teachers’ Avoidance of Model-Based Physical Education Lessons: A Grounded Theory Approach. Korean Journal of Sport Science, 35(1), 181–194.
Park, Y. (2024). Elementary school teachers’ avoidance of model-based physical education lessons: A grounded theory approach. Korean Journal of Sport Science, 35(1), 181–194.Piaget, J. (1976). The Child and Reality: Problems of Genetic Psychology. Viking Press.
Roșu, D., Cojanu, F., Vișan, P.-F., Muntean, R.-I., & Ursu, V.E. (2024). Structured Program for Developing the Psychomotor Skills of Institutionalized Children with Special Educational Needs. Children, 11(1), 102.
Schunk, D. H. (2012). Learning Theories: An Educational Perspective. Pearson.
Stanger, A., Kraus, J., Lim, W., Millman-Perlah, G., & Schroeder, M. (2024). Terra Incognita: The Governance of Artificial Intelligence in Global Perspective. Annual Review of Political Science, 27(1), 445–465.
Stanger, A., Kraus, J., Lim, W., Millman-Perlah, G., & Schroeder, M. (2024). Terra Incognita: The governance of artificial intelligence in global perspective. Annual Review of Political Science, 27(1), 445–465.
Tomlinson, C. A. (2001). How to Differentiate Instruction in Mixed-Ability Classrooms. ASCD.
UNESCO. (2005). Guidelines for Inclusion: Ensuring Access to Education for All. UNESCO Publishing.
Zhang, W., Chen, X., Mao, J., Ke, F., & Liang, H. (2024). How to select plan in emergency decision-making? A two-stage method with case-based reasoning and prospect theory. Applied Soft Computing, 155, 111473.
Zhang, W., Chen, X., Mao, J., Ke, F., & Liang, H. (2024). How to select plan in emergency decision-making? A two-stage method with case-based reasoning and prospect theory. Applied Soft Computing, 155, 111473.
Derechos de autor 2024 Rosa Marlene Jumbo Obaco,Lupe Rosana Taco Cuasapas,Marcela Paulina Samaniego Ojeda,Gustavo Joaquín Herrera Yaguana
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.