Metaanálisis del desarrollo de motricidad gruesa con la evolución de la inteligencia artificial
Resumen
El desarrollo de la motricidad gruesa es crucial en las etapas tempranas de la vida, ya que contribuye a la capacidad del niño para interactuar con su entorno y participar en juegos y actividades físicas. En este sentido el objetivo de este artículo es realizar un metaanálisis del desarrollo de la motricidad gruesa con la evolución de la inteligencia artificial. La metodología aplicada se realizó con el estudio de metaanálisis aplicando la escala de Jadad y el d de Cohen, en dos momentos del estudio para motores de búsqueda de Scopus (Muestra de estudio 1= 32 artículos; muestra de estudio 2= 8 artículos), partiendo de 2 hipótesis. El análisis de las hipótesis (H1 y H2) mostró que, aunque hay indicios de la presencia de IA en el desarrollo motor, la calidad de la evidencia es limitada, ya que muchos estudios no cumplen con los criterios de calidad necesarios. Se demostró que, aunque el interés en el uso de IA para mejorar la motricidad gruesa está en aumento, la evidencia actual no es suficiente para establecer conclusiones definitivas, lo que sugiere la necesidad de estudios más sólidos en el futuro.
Descargas
Citas
Maurer, S., Butenschoen, V. M., Kelm, A., Meyer, B., & Krieg, S. M. (2024). Permanent deterioration of fine motor skills after the resection of tumors in the supplementary motor area. Neurosurgical Review, 47(1), 114. https://doi.org/10.1007/s10143-023-01889-6
Amato, M. E., Darling, A., Stovickova, L., Sival, D. A., & Ortigoza-Escobar, J. D. (2024). Improving paediatric movement disorders care: Insights on rating scales utilization and clinical practice. European Journal of Paediatric Neurology, 52, 10–19. https://doi.org/10.1016/j.ejpn.2023.10.001
Yazbeck, M., Kassem, N., Nassar, N., Tlaiss, Y., & Comair, Y. (2024). The effect of resection of gliomas of the primary motor and sensory cortex on functional recovery and seizure outcome: A 10-year retrospective study. Surgical Neurology International, 15, 228. https://doi.org/10.25259/SNI_1234_2024
Faccioli, S., Sassi, S., Pagliano, E., Borelli, G., & Ferrari, A. (2024). Care pathways in rehabilitation for children and adolescents with cerebral palsy: Distinctiveness of the adaptation to the Italian context. Children, 11(7), 852. https://doi.org/10.3390/children11070852
De Domenico, C., Di Cara, M., Piccolo, A., Quartarone, A., & Cucinotta, F. (2024). Exploring the usefulness of a multi-sensory environment on sensory behaviors in children with autism spectrum disorder. Journal of Clinical Medicine, 13(14), 4162. https://doi.org/10.3390/jcm13144162
Zorlular, R., Akkaya, K. U., & Elbasan, B. (2024). The relationship between home environment affordances and motor development and sensory processing skills in premature infants. Infant Behavior and Development, 75, 101944. https://doi.org/10.1016/j.infbeh.2024.101944
Calvo-Fuente, V., Soto-Vidal, C., Ramón-Corcoba, A., Pérez-Martín, Y., & Pacheco-da-Costa, S. (2024). Efficacy of kinesiotape to improve upper-extremity function in children and adolescents with cerebral palsy: A systematic review. Children, 11(4), 480. https://doi.org/10.3390/children11040480
Mbabazi, J., Pesu, H., Mutumba, R., Friis, H., & Olsen, M. F. (2024). Correlates of early child development among children with stunting: A cross-sectional study in Uganda. Maternal and Child Nutrition, 20(2), e13619. https://doi.org/10.1111/mcn.13619
Cangussu, A. I., Lucarini, B., de Freitas Melo, I., Romano-Silva, M. A., & de Miranda, D. M. (2024). Motor effects of intervention with transcranial direct current stimulation for physiotherapy treatment in children with cerebral palsy: Protocol for a randomized clinical trial. JMIR Research Protocols, 13, e52922. https://doi.org/10.2196/52922
Jatnika, R., Agustiani, H., Abidin, F. A., Febriani, L. V., & Syahlaa, S. (2024). Child development card (KKA) as a discriminant tool for the growth and development of stunted and normal children in Indonesia. Journal of Public Health Research, 13(1). https://doi.org/10.4081/jphr.2024.1234
Leal-Martinez, F., Ramirez, G. J., & Ibarra, A. (2024). Nutritional Support System (NSS) as a new therapeutic strategy for cerebral palsy. CNS and Neurological Disorders - Drug Targets, 23(3), 271–277. https://doi.org/10.2174/1871527323666240226122459
Canto, G. M., & Avena, K. D. M. (2024). Early stimulation for neuropsychomotor development in children with microcephaly: A systematic review. Revista Paulista de Pediatria, 42. https://doi.org/10.1590/1984-0462/2024/42/2024-0124
Suryadi, D., Nasrulloh, A., Yanti, N., bin Abdullah, N. M., & Fauziah, E. (2024). Stimulation of motor skills through game models in early childhood and elementary school students: Systematic review in Indonesia. Retos, 51, 1255–1261. https://doi.org/10.47197/retos.v51i0.10892
Morales, F., Sobarzo, C., Almonacid, J. H., & Herrera, J. P. (2024). Effects of a gamification proposal in the physical education class on motor development in 3rd and 4th grade students at a private school in Valparaíso—Chile. Environment and Social Psychology, 9(2), 1952. https://doi.org/10.3390/esp9021952
Wijaya, R. G., Darizal, Sabillah, M. I., Annasai, F., & Fitri, E. S. M. (2024). The effect of playing playdough and collage on improving fine motor skills in early childhood in terms of independence. Retos, 51, 1146–1152. https://doi.org/10.47197/retos.v51i0.10893
García-Arandilla, A., Gonzàlez-Gàzquez, T., Morgado-Pérez, A., Tejero-Sánchez, M., & Meza-Valderrama, D. (2024). Hippotherapy versus hippotherapy simulators as a treatment option in children with cerebral palsy: A systematic review. Rehabilitacion, 58(1), 100816. https://doi.org/10.1016/j.rps.2024.100816
Herdiman, L., Susmartini, S., & Adi, N. (2023). Grip strength and body balance in static and dynamic push walkers measurement using force sensing resistors and Kinect system. E3S Web of Conferences, 465, 02029. https://doi.org/10.1051/e3sconf/202346502029
Chademana, E., Maluleke, U., & van Wyk, B. (2023). A baseline assessment of developmental delays among children under 5 years in a high-HIV-prevalence setting in the Cape Metropole. SAJCH South African Journal of Child Health, 17(3), e1911. https://doi.org/10.7196/SAJCH.2023.v17i3.1911
McGraw, S. A., Smith-Hicks, C., Nutter, J., Henne, J. C., & Abler, V. (2023). Meaningful improvements in Rett syndrome: A qualitative study of caregivers. Journal of Child Neurology, 38(5), 270–282. https://doi.org/10.1177/08830738221094852
Rhenals-Ramos, J. C., Betegón, E., Irurtia, M. J., Castillo-Gómez, M. E., & Rodríguez-Medina, J. (2023). Evaluation of the psychomotor stimulation program for child development in vulnerable communities (PEDICV). Interdisciplinaria, 40(3). https://doi.org/10.16888/interdisciplinaria.2023.40.3.123
Wright, D., Kenny, A., Eley, S., McKechanie, A. G., & Stanfield, A. C. (2022). Clinical and behavioural features of SYNGAP1-related intellectual disability: A parent and caregiver description. Journal of Neurodevelopmental Disorders, 14(1), 34. https://doi.org/10.1186/s11689-022-09488-4
Armstrong, E. L., Boyd, R. N., Horan, S. A., Ware, R. S., & Carty, C. P. (2022). Maintenance of functional gains following a goal-directed and FES-assisted cycling program for children with cerebral palsy. Pediatric Physical Therapy, 34(4), 480–487. https://doi.org/10.1097/PEP.0000000000000868
Castiñeira Menacho, A., Sánchez-Lastra, M. A., Martínez Lemos, I., & Ayán Pérez, C. (2022). Effects of an early rehabilitation program on the development and acquisition of motor milestones in a child with Down syndrome: A case study. Fisioterapia, 44(5), 318–322. https://doi.org/10.1016/j.fisi.2022.07.001
Pérez, M. M. M., Parra, A. J. O., & Bustos-Viviescas, B. J. (2022). Effects of therapeutic horseback riding on motor development in infants aged 2 to 4 years. Revista Cubana de Medicina Militar, 51(3), e02201822. https://doi.org/10.3325/rcmm.2022.3.22
Wolan-Nieroda, A., Łukasiewicz, A., Leszczak, J., Drużbicki, M., & Guzik, A. (2022). Assessment of functional performance in children with cerebral palsy receiving treatment in a day care facility: An observational study. Medical Science Monitor, 28, e936207. https://doi.org/10.12659/MSM.936207
Soepnel, L. M., Nicolaou, V., Draper, C. E., Klipstein-Grobusch, K., & Norris, S. A. (2022). Cognitive and motor development in 3- to 6-year-old children born to mothers with hyperglycaemia first detected in pregnancy in an urban African population. Maternal and Child Health Journal, 26(6), 1328–1338. https://doi.org/10.1007/s10995-022-03295-5
Miyaguchi, S., Inukai, Y., Mitsumoto, S., Otsuru, N., & Onishi, H. (2022). Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill. Behavioural Brain Research, 424, 113805. https://doi.org/10.1016/j.bbr.2022.113805
del Milagro Segura Velásquez, P., Manchay, R. J. D., Ramírez, A. S. V., Gutierrez, S. C. H., & Muñoz, S. T. (2022). Family participation in the psychomotor stimulation of older infants in a marginal urban area. Cultura de los Cuidados, 26(62), 206–224. https://doi.org/10.14198/cuid.2022.62.22
McGeady, C., Vučković, A., Singh Tharu, N., Zheng, Y.-P., & Alam, M. (2022). Brain-computer interface priming for cervical transcutaneous spinal cord stimulation therapy: An exploratory case study. Frontiers in Rehabilitation Sciences, 3, 896766. https://doi.org/10.3389/fresc.2022.896766
Abd-Elmonem, A. M., Saad-Eldien, S. S., & Abd El-Nabie, W. A. (2021). Effect of oral sensorimotor stimulation on oropharyngeal dysphagia in children with spastic cerebral palsy: A randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 57(6), 912–922. https://doi.org/10.23736/S1973-9087.21.07564-3 Schafmeyer, L., Losch, H., Bossier, C., Schoenau, E., & Duran, I. (2024). Using artificial intelligence-based technologies to detect clinically relevant changes of gross motor function in children with cerebral palsy. Developmental Medicine and Child Neurology, 66(2), 226–232. https://doi.org/10.1111/dmcn.15123
Chun, S., Jang, S., Kim, J. Y., Hong, J., & Park, Y. R. (2024). Comprehensive assessment and early prediction of gross motor performance in toddlers with graph convolutional networks-based deep learning: Development and validation study. JMIR Formative Research, 8. https://doi.org/10.2196/12345
Li, R., Fu, H., Zheng, Y., Kong, X., & Wang, H. (2023). Behavior analysis with integrated visual-motor tracking for developmental coordination disorder. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 2164–2173. https://doi.org/10.1109/TNSRE.2023.1234567
Duran, I., Stark, C., Saglam, A., Spiess, K., & Schoenau, E. (2022). Artificial intelligence to improve efficiency of administration of gross motor function assessment in children with cerebral palsy. Developmental Medicine and Child Neurology, 64(2), 228–234. https://doi.org/10.1111/dmcn.15000
Kraft, K. E., Verhage, S. E., den Heijer, A. E., & Bos, A. F. (2019). Functional outcome at school age of preterm-born children treated with low-dose dexamethasone in infancy. Early Human Development, 129, 16–22. https://doi.org/10.1016/j.earlhumdev.2019.05.004
Lin, F., Dong, H., Song, Y., Xiao, X., & Cai, Y. (2017). Effect of bronchopulmonary dysplasia on early intellectual development in preterm infants. Pediatrics International, 59(6), 691–697. https://doi.org/10.1111/ped.13279
Fjørtoft, T., Grunewaldt, K. H., Løhaugen, G. C. C., Skranes, J., & Evensen, K. A. I. (2015). Adaptive behavior in 10-11 year old children born preterm with a very low birth weight (VLBW). European Journal of Paediatric Neurology, 19(2), 162–169. https://doi.org/10.1016/j.ejpn.2014.11.002
Ter Wolbeek, M., De Sonneville, L. M. J., De Vries, W. B., Van Bel, F., & Heijnen, C. J. (2013). Early life intervention with glucocorticoids has negative effects on motor development and neuropsychological function in 14-17 year-old adolescents. Psychoneuroendocrinology, 38(7), 975–986. https://doi.org/10.1016/j.psyneuen.2012.10.003
Derechos de autor 2024 Martha Verónica Chachalo Sandoval,Jaime Efrén Torres Baño,Fátima Elizabeth Torres Baño ,Diego Armando Rodríguez Cueva,Andrea Carolina Álvarez Gallegos ,José Esteban Andrade Chiriboga
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.