Structural inspection using RPAS (drones): the case of the Guayllabamba Bridge
Abstract
The use of unmanned aircraft systems (UAS), more commonly known as drones or remotely piloted aircraft systems (RPAS), has expanded significantly in recent years across a wide range of applications, including the inspection of civil engineering structures. The present article arises from an experimental inspection of a singular bridge structure—the Guayllabamba Bridge—carried out by the authors with the aim of demonstrating that RPAS can serve as a high-quality tool for performing inspection tasks that are currently conducted using highly qualified personnel and cumbersome auxiliary access equipment. The results show that an equivalent or even superior level of inspection quality can be achieved, while simultaneously minimizing risks to the occupational safety and health of the workers involved and achieving a substantial reduction in both time and costs. The article is structured as follows: after this introduction, the methodology employed is described, including the regulatory framework, the equipment used, and the flight and data processing procedures. Next, the results of the inspection and the corresponding structural analysis are presented. Finally, the technical implications of the results obtained are discussed, and conclusions are drawn regarding the applicability of RPAS (Remotely Piloted Aircraft Systems) in the inspection and preventive maintenance of road infrastructure.
Downloads
References
Abad-Auquilla, A. (2020). El cambio de uso de suelo y la utilidad del paisaje periurbano de la cuenca del río Guayllabamba en Ecuador. Revista de Ciencias Ambientales, 54(2), 68–91. https://doi.org/10.15359/rca.54-2.4
ADIF. (2025a). Norma ADIF Plataforma: Inspección básica de puentes de ferrocarril (NAP 2-4-0.0, 1.a ed., Erratum 1 y Modificación M1). Administrador de Infraestructuras Ferroviarias (ADIF).
ADIF. (2025b). Norma ADIF Plataforma: Inspección principal de pasos superiores sobre el ferrocarril (NAP 2-4-1.4, 2.a ed.) (2a). Administrador de Infraestructuras Ferroviarias (ADIF).
Aldana Rodríguez, D., Lozano Tafur, C., Melo Daza, P. F., Villalba Vidales, J. A., & Daza Rincón, J. C. (2024). Inspection of aircrafts and airports using UAS: A review. Results in Engineering, 22. https://doi.org/10.1016/j.rineng.2024.102330
Calavera Ruiz, J. (2005). Patología de Estructuras de Hormigón Armado y Pretensado. INTEMAC.
Campo Molinuevo, Í. (2015). Aplicaciones en el Control de Obras y Evaluacón de Impactos. In Los drones y sus aplicaciones a la ingeniería (pp. 149–160). Fundación de la Energía de la Comunidad de Madrid. https://www.fenercom.com/wp-content/uploads/2015/03/Los-Drones-y-sus-Aplicaciones-a-la-Ingenieria-Civil-fenercom-2015.pdf
Choudhury, J., & Hasnat, A. (2015). Bridge collapses around the world: Causes and mechanisms. IABSE-JSCE Joint Conference on Advances in Bridge Engineering-III, August, 651. https://www.researchgate.net/publication/281280663_Bridge_collapses_around_the_world_Causes_and_mechanisms
Corvo, F., Pérez, T., Martin, Y., Reyes, J., Dzib, L. R., González-Sánchez, J., & Castañeda, A. (2008). Time of wetness in tropical climate: Considerations on the estimation of TOW according to ISO 9223 standard. Corrosion Science, 50(1), 206–219. https://doi.org/10.1016/j.corsci.2007.06.012
Dirección General de Aviación Civil. (2024). RDAC 101 – Sistemas de aeronaves no tripuladas (UAS). Dirección General de Aviación Civil. https://www.aviacioncivil.gob.ec/wp-content/uploads/downloads/2024/12/RDAC-101-UAS.pdf
Escudero Castro, H. C. (2014). Manual de Patología y Rehabilitación de Edificios. Gremium, 1(2), 68–69. https://doi.org/10.56039/rgn02a06
Falorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071
Fan, J., & Saadeghvaziri, M. A. (2019). Applications of drones in infrastructures: Challenges and opportunities. Int J Mech Mechatron Eng, 13(10), 649–655. https://www.researchgate.net/profile/Jin-Fan-11/publication/336262417_Applications_of_Drones_in_Infrastructures_Challenges_and_Opportunities/links/5d974d84458515c1d393e0f1/Applications-of-Drones-in-Infrastructures-Challenges-and-Opportunities.pdf
Fernández Cánovas, M. (1995). Patología y terapeutica del hormigón armado.
Frankel, G. S., & Sridhar, N. (2008). Understanding localized corrosion. Materials Today, 11(10), 38–44. https://doi.org/10.1016/S1369-7021(08)70206-2
García de Miguel, J. M. (2009). Tratamiento y conservación de la piedra, el ladrillo y los morteros en monumentos y construcciones (Consejo General de Arquitectura Técnica España (ed.); 1a).
Gouvernement du Québec. (2017). Manuel d’inspection des structures. Ministère des Transports, de la Mobilité durable et de l’Électrification des transports. https://www.publicationsduquebec.gouv.qc.ca/produits-en-ligne/ouvrages-routiers/guides-et-manuels/ouvrages-dart/manuel-dinspection-des-structures/
Gutiérrez Sandoval, C. D., Takemoto Silva, T. A., Venegas Minchola, B. A., Vidondo Chafloc, G., & Villanueva Ramos, J. R. (2024). Analysis of Critical Success Factors for the Implementation of Drones in the Logistics Sector: Systematic Review. Gestión de Operaciones Industriales, 3(1), 48–63. https://doi.org/10.17268/goi4.0.2024.03
Hernández, F. J. M., González, V. B., & Briz, X. M. (2023). Drone (RPAS) detection methodology for prehistoric rock art surveying. Lucentum, 42, 33–50. https://doi.org/10.14198/LVCENTVM.23467
Kardach, M., Fuć, P., Galant, M., & MacIejewska, M. (2019). Risk Assessment of Remotely Piloted Aircraft Systems. Journal of Konbin, 49(1), 95–106. https://doi.org/10.2478/jok-2019-0005
Kurbanov, R. K., & Zakharova, O. M. (2020). Recommendations for UAV Pre-Flight Preparation. Elektrotekhnologii i Elektrooborudovanie v APK, 67(1), 93–98. https://doi.org/10.22314/2658-4859-2020-67-1-93-98
Lan, R. D. O. (2020). Aparelhos de apoio fretado de neoprene: Uma revisão. Revista Tecnologia, 41(1). https://doi.org/10.5020/23180730.2020.10602
Lu, J. C., Wang, Z. B., Hu, H. X., & Zheng, Y. G. (2024). Understanding localized corrosion mechanism of 90/10 copper-nickel alloy in flowing NaCl solution induced by partial coverage of corrosion products films. Corrosion Science, 227. https://doi.org/10.1016/j.corsci.2023.111716
Ministerio de Fomento. (2009). Guía de inspecciones básicas de obras de paso: Red de Carreteras del Estado. Ministerio de Fomento. Secretaría General Técnica. Centro de Publicaciones. https://cdn.fomento.gob.es/portal-web-drupal/inspecciones_obras_paso.pdf
Ministerio de Fomento. (2012). Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Ministerio de Fomento. Secretaría General Técnica. Centro de Publicaciones. https://www.transportes.gob.es/recursos_mfom/0870250.pdf
New York State Department of Transportation. (2024). Bridge Inspection Manual. New York State Department of Transportation, Office of Structures. https://www.dot.ny.gov/divisions/engineering/structures/manuals/bridge-inspection
Oñate de Mora, M. (2015). Tipología de aeronaves pilotadas por control remoto. In Los drones y sus aplicaciones a la ingeniería (pp. 49–56). Fundación de la Energía de la Comunidad de Madrid. https://www.fenercom.com/wp-content/uploads/2015/03/Los-Drones-y-sus-Aplicaciones-a-la-Ingenieria-Civil-fenercom-2015.pdf
Perez Jimeno, S., Capa Salinas, J., Perez Caicedo, J. A., & Rojas Manzano, M. A. (2023). An integrated framework for non-destructive evaluation of bridges using UAS: a case study. Journal of Building Pathology and Rehabilitation, 8(2). https://doi.org/10.1007/s41024-023-00299-x
Rashidi, M., & Samali, B. (2021). Health monitoring of bridges using rpas. Lecture Notes in Civil Engineering, 101, 209–218. https://doi.org/10.1007/978-981-15-8079-6_20
Rodríguez Elizalde, R. (2022a). Birds Effects on Heritage Buildings. Environmental Analysis & Ecology Studies, 10(2), 1119. https://doi.org/10.31031/eaes.2022.10.000732
Rodríguez Elizalde, R. (2022b). Structural Inspection by RPAS (Drones): Quality Work with Preventive Guarantee. Journal of Engineering and Applied Sciences Technology, 1–11. https://doi.org/10.47363/jeast/2022(4)143
Rodríguez Elizalde, R. (2024a). Assessment of Architectural Heritage and Historic Structures Through Aerial Thermography. Revista de Gestão Social e Ambiental, 18(10), e08761. https://doi.org/10.24857/rgsa.v18n10-105
Rodríguez Elizalde, R. (2024b). Comprehensive Technical Inspection of a Medieval Bridge (Ponte de Vilanova, in Allariz) Using Microtechnological Tools. Eng, 5(4), 3259–3283. https://doi.org/10.3390/eng5040171
Rodríguez Elizalde, R. (2024c). Use of RPAS (DRONES) for Masonry Arch Bridges Inspection: Quality and Sustainable Work with Preventive Guarantee. Revista De Gestão Social E Ambiental, 18(12). https://doi.org/https://doi.org/10.24857/rgsa.v18n12-048
Rodríguez Elizalde, R. (2025). Drones as a tool for the sustainable conservation of heritage metal Structures. International Journal of Innovative Research and Scientific Studies, 8(3), 405–426. https://doi.org/10.53894/ijirss.v8i3.6542
Sándor, Z. (2023). Challenges of the visual line of sight operations of unmanned aerial vehicles. Acta Technica Jaurinensis, 16(4), 167–173. https://doi.org/10.14513/actatechjaur.00717
Seo, J., Duque, L., & Wacker, J. (2018). Drone-enabled bridge inspection methodology and application. Automation in Construction, 94, 112–126. https://doi.org/10.1016/j.autcon.2018.06.006
Strieška, M., Koteš, P., & Sedmak, A. (2018). Decreasing bridge membeŕs resistance due to reinforcement corrosion. Procedia Structural Integrity, 13, 1745–1750. https://doi.org/10.1016/j.prostr.2018.12.366
Toirac Corral, J. (2004). Patología de la construcción: grietas y fisuras en obras de hormigón; origen y prevención. Ciencia y Sociedad, 29(1), 72–114. https://doi.org/10.22206/cys.2004.v29i1.pp72-114
Washington State Department of Transportation. (2025). Washington State Bridge Inspection Manual. M 36-64.15. Washington State Department of Transportation, Bridge Preservation Enginee. https://wsdot.wa.gov/engineering-standards/all-manuals-and-standards/manuals/bridge-inspection-manual
Copyright (c) 2026 Rubén Rodríguez Elizalde,Pablo Roberto Suasnavas Bermúdez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
